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Ventenata (Ventenata dubia [Leers] Coss.) is an exotic annual grass that can invade intermountain rangeland plant
communities, where it can form monotypic stands, degrade wildlife habitat, and reduce livestock forage. There is
limited information on ventenata control in rangelands as it has only recently been identified as a substantial prob-
lem. Imazapic is a pre-emergent herbicide commonly used to control other exotic annual grasses and, therefore, is
likely to control ventenata in rangelands. We evaluated five application rates of imazapic (0−175 g ae ∙ha−1) on
ventenata and other exotic annual grass control and plant community response at two rangeland sites in 2 yr
(2014 and 2015). Imazapic reduced exotic annual grass (largely ventenata) cover and density, with greater control
with increasing imazapic rates. Exotic annual grass density at the highest levels of control (82%−94%) was
184−299 plants ∙m−2 the first yr after imazapic application. Exotic annual grasses fully recovered in the second
or third yr after imazapic application. Bare ground generally increasedwith imazapic application.However, density
of perennial vegetation (grasses and forbs) did not vary among treatments. Perennial vegetation cover generally
did not increase with imazapic control of ventenata and other exotic annual grasses. Imazapic can control
ventenata; however, even at the highest rates, control was not enough to shift the dominance from exotic annual
species to perennial species. Integrating other treatments with imazapic application may be a strategy to improve
ventenata control and increase perennial vegetation andwill require further investigation. The difficulty and likely
expense of achieving substantial and lasting control of ventenata suggest, similar to other exotic annual grasses,
that preventing ventenata invasion and dominance should be a high management priority.

Published by Elsevier Inc. on behalf of The Society for Range Management.
Introduction

Exotic annual grass invasion and dominance is a serious manage-
ment concern and causes substantial degradation of native ecosys-
tems, especially in the western United States (Brooks et al., 2004;
Davies et al., 2011; Chambers et al., 2014). Invasion by exotic annual
grasses can increase wildfire frequency by increasing fine fuel
amounts and continuity (D’Antonio and Vitousek, 1992; Davies and
Nafus, 2013). Annual grass fuel also dries out earlier than native veg-
etation, potentially elongating the wildfire season (Brooks, 2008;
Davies and Nafus, 2013). Exotic annual grass invasions are often an
rtunity provider and employer.
rantee or warranty of the prod-
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ecosystem-level change that converts native savannas, shrublands,
and shrub-grasslands to near-monocultures of annual grasses
(D’Antonio and Vitousek, 1992; Brooks et al., 2004). Conversion of
native plant communities to exotic annual grasslands decreases bio-
diversity and ecosystem services (Belnap and Phillips, 2001; Davies,
2011).

Ventenata (Ventenata dubia [Leers] Coss.), also known as North
Africa grass and wiregrass, is an exotic annual grass that is becoming
of increasing concern across the western United States. Ventenata
has rapidly spread in the Intermountain West and is especially prob-
lematic in grass-hay production systems, Conservation Reserve Pro-
gram (CRP) lands, and rangelands (Wallace et al., 2015; Avert et al.,
2016; Wallace and Prather, 2016). Ventenata is also expanding into
sagebrush rangelands (Jones et al., 2018). In rangelands, ventenata
dries out earlier than native perennial vegetation and increases the
continuity of fine fuels, thereby increasing fire risk (Fryer, 2017).
Ventenata appears to be generally unpalatable to cattle as they
often consume substantial amounts of vegetation in and around in-
festation without any noticeable grazing of ventenata (personal ob-
servation). Hay infested with ventenata has low palatability to
cattle (McCurdy et al., 2017). Ventenata is also competitive with
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native perennial grasses (McKay et al., 2017). Similar to other exotic
annual grasses, ventenata invasion of rangelands is expected to de-
crease biodiversity, decrease forage production, and degrade wildlife
habitat (Fryer, 2017).

Though ventenata has been present since the 1950s in the Inter-
mountain West, it has only been identified as a significant issue in
the past decade (Wallace and Prather, 2016). Subsequently, there
are substantial knowledge gaps about its ecology and management,
especially in rangelands. Ventenata invasion can produce near-
monotypic stands (Wallace and Prather, 2016) requiring develop-
ment of management approaches that both control ventenata and
promote perennial vegetation. Preemergent herbicides have been
used in such approaches in rangelands for controlling other invasive
annual grasses, including cheatgrass (Bromus tectorum L.) and
medusahead (Taeniatherum caput-medusae [L.] Nevski) (Kyser
et al., 2007; Elseroad and Rudd, 2011; Mangold et al., 2013). Pre-
emergent herbicides demonstrate potential for controlling
ventenata (Sebastian et al., 2016; Wallace and Prather, 2016) but
have not been evaluated in rangelands.

Imazapic is a preemergent herbicide commonly used to control ex-
otic annual grasses in noncultivated lands. Ventenata has been con-
trolled with imazapic in a greenhouse study (Sebastian et al., 2016)
and in grasslands (Wallace and Prather, 2016). Ventenata in rangelands,
therefore, can likely be controlled with imazapic. Imazapic control of
other annual grasses generally increases with increasing application
rates; however, full control is often achieved before the highest rates
(Kyser et al., 2007; Sheley et al., 2007). Imazapic can cause injury to
perennial grasses, dependent on rates, timing of application, and species
(Shinn and Thill, 2004; Kyser et al., 2007). Therefore, evaluating
different imazapic application rates is critical to determine ventenata
control efficiency, as well as plant community response in rangeland
systems.

The objective of this study was to evaluate varying rates of imazapic
application on control of ventenata and coexisting exotic annual grasses
and plant community response. We hypothesized that 1) increasing
imazapic application rates would improve exotic annual grass (primar-
ily ventenata) control and 2) perennial grasses and forbswould increase
with exotic annual grass control.
Methods and Materials

Study Area

The study was conducted in two ventenata-invaded sites in
Grant County south and southeast of John Day, Oregon at 1 111 and 1
320 m above sea level and separated by 21 km. Slopes were relatively
flat (b 4°). In this region, most precipitation occurs in the winter and
early spring and summers are typically hot and dry. Long-term
(1981−2010) average annual precipitation was 353 mm and 441 mm
at Site 1 and Site 2, respectively (PRISM, 2018). Crop year (Oct.−Sept.)
precipitation at Site 1 was 85%, 101%, 83%, and 104% of the long-term av-
erage in 2013−2014, 2014−2105, 2015−2016, and 2016−2017, re-
spectively (PRISM, 2018). Crop year precipitation at Site 2 was 86%, 99%,
87%, and 104% of the long-term average in 2013−2014, 2014−2105,
2015−2016, and 2016−2017, respectively (PRISM, 2018). Soils were
shallow clayey and loamy at Site 1 and Site 2, respectively. The potential
natural vegetation at these study sites was shrub steppe with an under-
story dominated by Idaho fescue (Festuca idahoensis Elmer) and
bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve). The
overstory included antelope bitterbrush (Purshia tridentata [Pursh] DC.)
and low sagebrush (Artemisia arbuscula Nutt.) before ventenata domi-
nance. Shrubs had been lost from the study sites from previous wildfires.
Livestockwere excluded fromboth sites for the duration of the studywith
four-strand barbwire fencing. Wildlife were not excluded from study
sites.
Experimental Design and Measurements

A randomized complete block design at two sites was used to evalu-
ate different imazapic application rates replicated four times at each
site. The entire experiment was repeated in 2014 and 2015. Treatments
were imazapic applied at 0 (nontreated control), 70, 105, 140, and 175 g
ae ∙ha−1, with application treatments randomly assigned to 5 × 10 m
plots in each block at each site in each year. A 2-m buffer was placed be-
tween treatment plots. Imazapicwas applied in 2014on 2 and 3October
and in 2015 on 29 and 30 September. In 2014, winds speeds ranged
from 0.6 to 6.2 km ∙hr−1, relative humidity varied from 20% to 40%,
and temperatures were between 11°C and 21°C during imazapic appli-
cation. In 2015, winds speeds ranged from 1.0 to 6.5 km ∙hr−1, relative
humidity varied from 17% to 20%, and temperatures were between
21°C and 24°C during imazapic application. Imazapic treatments were
applied with water at a rate of 140 L ∙ha−1 (15 gallons ∙ac−1) using a
manual pump backpack sprayer with a fan nozzle.

Vegetation measurements were conducted in June in 2015, 2016,
and 2017 and June in 2016 and 2017 for the 2014 and 2015 applications,
respectively. Two 10-m transects spaced 2 m apart and located parallel
to the long edge of the plot were used to sample each treatment plot.
Vegetation foliar cover by species was estimated in ten 0.2 m2 (40 ×
50 cm) quadrats located at 2-m intervals along the two 10-m transects.
Biological soil crust, bare ground, and litter cover were also estimated in
the 0.2-m2 quadrats. Herbaceous density for perennial species was
measured by counting all individuals rooted inside the 0.2-m2 quadrats.
Annual grass and annual forb density weremeasured by counting all in-
dividuals rooted inside a corner (10%) of the 0.2-m2 quadrats. Shrubs
were not present in any treatment plot, so shrub cover and density
were not measured.

Statistical Analyses

Repeated measures analysis of variances (ANOVAs) with sampling
year as the repeated factor using the PROC MIXED method in SAS v.
9.4 (SAS Institute Inc., Cary, NC)were used to compare vegetation char-
acteristics among treatments. The 2014 and 2015 applications were an-
alyzed individually because they differed in the number of post-
treatment sampling years. There was not a site • treatment interaction
for any response variable; thus, data from both sites were analyzed to-
gether. The appropriate covariance structure for each analysis was se-
lected using the Akaike’s Information Criterion (Littell et al., 1996).
When needed, data were log transformed before analysis to meet
ANOVA data distribution assumptions. Treatment meanswere reported
as original, nontransformed data and with standard errors (mean +
S.E.). Post-hoc treatment means were separated using the Tukey
method (P b 0.05). Herbaceous vegetationwas grouped into four groups
for analyses: perennial grass, exotic annual grass, perennial forb, and
annual forb. The exotic annual grass group was primarily composed of
ventenata but also included medusahead and cheatgrass. Ventenata
comprised 81−96% and 88−99% of the density and cover of the exotic
annual grass group in test plots in each year.

Results

2014 Application

Exotic annual grass density showed a treatment • year interaction
(Fig. 1A; P b 0.001). In the first 2 yr post treatment, exotic annual
grass density generally decreased with increasing imazapic application
rate, but by the third yr exotic annual grass density was similar among
all treatments. Perennial grass density was not influenced by the treat-
ment • year interaction (P=0.882) and did not vary among treatments
(P = 0.258) but was greater in 2016 than 2015 and 2017 (P = 0.039).
Perennial grass density averaged 14.8 ± 3.3, 12.9 ± 2.0, 15.7 ± 2.1,
and 16.4 ± 2.4 plants ∙m−2 in the 0, 70, 105, 140, and 175 g ae ∙ha−1



m
stnalp(

ytisneD
2 )

0

1000

2000

3000

4000
0 g
70 g 
105 g
140 g
175 g

abc
d

e
aa a

b

c

a a a
a a

Treatment P < 0.001
Year P < 0.001
Year  trt P < 0.001

Year

2015 2016 2017

C
ov

er
 (%

)

0

10

20

30

40

50

a

bab

b

c

aa
a

b

ab a
a a

a
a

Treatment P < 0.001
Year P < 0.001
Year  trt P < 0.001

A. Density

B. Cover

−

Figure 1. Exotic annual grass (primarily ventenata) density (A) and cover (B) (mean +
S.E.) across five rates of imazapic application (0−175 g ae ∙ha−1) in the three post-
treatment growing seasons following the 2014 application. Year • trt = treatment • year
interaction. Different lowercase letter indicates difference between treatment means (P
b 0.05) for that growing season.
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treatments, respectively. Perennial forb and annual forb density were
not influenced by the treatment • year interaction (P = 0.776 and
0.930, respectively; data not shown) and did not vary among treat-
ments (P = 0.193 and 0.126, respectively). Perennial and annual forb
density differed among years (P b 0.001) with greater densities in
2016 than 2015 or 2017.

Consistent with density data, exotic annual grass cover was influ-
enced by the treatment • year interaction (Fig. 1B; P b 0.001) and gener-
ally declined with increasing imazapic rates in the first 2 yr after
treatment, but by the third yr there was not a difference among treat-
ments. Perennial grass cover varied among treatments (Fig. 2A; P =
0.037). Perennial grass cover was greatest in the 175 g ae ∙ha−1 treat-
ment (P b 0.02) but did not differ from the 105 g ae ∙ha−1 treatment
(P=0.095). Perennial grass cover did not differ among the other treat-
ment comparisons (P N 0.05). Perennial grass cover was greater in 2016
than 2015 and 2017 (P b 0.001). Perennial forb and annual forb cover
(data not shown) were not influenced by the treatment • year interac-
tion (P = 0.779 and 0.942, respectively) and were similar between
treatments (P = 0.193 and 0.126, respectively). Perennial and annual
forb cover were greater in 2016 than 2015 and 2017 (P b 0.001). Bare
ground varied among treatments (Fig. 2B; P = 0.016) with it being
greater at the three highest rates of imazapic application. Bare ground
decreased over time (P = 0.007) but was not influenced by the treat-
ment • year interaction (P = 0.667). Litter and biological soil crust
cover (data not shown) were not influenced by the treatment • year in-
teraction (P = 0.153 and 0.796, respectively) and did not vary among
treatments (P = 0.534 and 0.130, respectively) but varied among
years (P b 0.001). Litterwas greater in 2017 than 2015 and 2016. Biolog-
ical soil crust cover was greater in 2016 than 2015 and 2017.
2015 Application

Exotic annual grass densitywas influencedby the treatment • year in-
teraction (Fig. 3A; P b 0.001). In the first yr post treatment, annual grass
density generally decreased with increasing imazapic application rate.
However, by the second yr, exotic annual grass density was similar
among treatments. Perennial grass density was not influenced by the
treatment • year interaction (P = 0.077) and did not differ among treat-
ments (P=0.271) or between years (P=0.117). Perennial grass density
averaged 9.6 ± 1.8, 10.3 ± 1.8, 15.5 ± 2.5, 13.8 ± 2.0, and 11.0 ± 2.0
plants ∙m−2 in the 0, 70, 105, 140, and 175 g ae ∙ha−1 treatments, respec-
tively. Perennial forb and annual forb densities (data not shown) were
not influenced by the treatment • year interaction (P = 0.750 and
0.347, respectively) and did not vary among treatments (P = 0.506
and 0.318, respectively). Perennial forb density was similar between
years (P = 0.997); however, annual forb density was greater in 2017
compared with 2016 (P b 0.001).

Exotic annual grass cover was influenced by the treatment • year in-
teraction (Fig. 3B; P=0.009). In thefirst yr post treatment, annual grass
cover generally decreased with increasing imazapic application rate. By
the second yr, exotic annual grass cover was similar among treatments.
Perennial grass cover did not vary among treatments (Fig. 4; P=0.374)
but was greater in 2016 comparedwith 2017 (P b 0.001). Perennial forb
and annual forb cover (data not shown) did not vary by the treatment •
year interaction (P = 0.734 and 0.360, respectively), were similar
among treatments (P = 0.807 and 0.651, respectively), and were
greater in 2016 than 2017 (P b 0.001). Bare ground varied by the treat-
ment • year interaction (Fig. 5; P = 0.040). Bare ground was similar
among treatments in 2016. In 2017, bare ground generally increased
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with increasing imazapic application rate. Litter (data not shown) was
not influenced by the treatment • year interaction (P = 0.623) and did
not differ among treatments (P = 0.077) but was greater in 2017 than
2016 (P b 0.001). Biological soil crust cover (data not shown) was not
influenced by the treatment • year interaction (P=0.932) andwas sim-
ilar among treatments (P=0.559), but it was greater in 2016 than 2017
(P = 0.041).
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Discussion

Imazapic application at all rates generally reduced exotic annual
grass, primarily ventenata, cover, and density in both the 2014 and
2015 applications compared with the nontreated control, except the
70 g ae ∙ha−1 imazapic rate was similar to the nontreated control in
the 2015 application. Ventenata and coexisting exotic annual grass con-
trol was generally more successful with increasing rates of imazapic;
however, in the 2015 application therewas not an advantage of increas-
ing the application rate from 140 g ae ∙ha−1 to 170 g ae ∙ha−1. Similarly,
increasing imazapic application rates, up to a point, generally increased
control of other exotic annual grasses (Kyser et al., 2007; Sheley et al.,
2007). The 2014 applications appearedmore effective than the 2015 ap-
plications at controlling ventenata and other coexisting exotic annual
grasses. This suggests that there likely will be variability in ventenata
control when using imazapic, depending on interannual climatic varia-
tion and other factors.

Exotic annual grass control was not complete in the first yr after
treatment in either application at any imazapic application rate. At the
best control levels, annual grass density averaged 299 and 184
plants ∙m−2 the first yr after imazapic application in the 2014 and
2015 applications, respectively. This is probably not adequate control
for dealing with exotic annuals with high seed production that can rap-
idly redominate a site. Better control may have been achieved by reduc-
ing the accumulated annual grass litter before imazapic application, as
has been found in controlling medusahead where litter removal results
in better contact between the herbicide and target (Monaco et al., 2005;
Kyser et al., 2007; Davies, 2010).

Density of perennial vegetation did not increase with imazapic ap-
plication, regardless of application rate. Thus, it seems unlikely that
short-term control of ventenata with imazapic will promote substantial
long-term changes in plant community composition. We did detect a
slight increase in perennial grass cover in the 2014 application at the
highest imazapic application rate, but an increase in total perennial
grass cover of 1.3% is probably not biologically significant. Though
bare ground cover increased with ventenata control in both the 2014
and 2015 applications, it did not correspond to increases in plant
groups, in particular annual forbs. If more resources were available for
other plant groups, we would have expected to see increases in annual
forbs in the second yr after imazapic toxicity had abated or increases in
perennial vegetation. Variation in perennial grass, perennial forb, and
annual forb cover were probably related to interannual climatic differ-
ences, not imazapic application rates. The general lack of response
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from perennial species to imazapic application suggests there is limited
value in applying imazapic to these ventenata-dominated communities
without also including revegetation efforts. However, a second herbi-
cide application to control ventenata and other exotic annual grasses
may release perennial grasses and may also improve revegetation ef-
forts. Enhancing perennial vegetation establishment is critical to in-
creasing resistance to exotic annual grass dominance (Davies, 2008;
Chambers et al., 2014; Davies and Johnson, 2017) and, therefore,
ventenata control should be followed with seeding or planting peren-
nial vegetation to provide lasting reductions in exotic annuals.

A concerning result from our study was the rapid redominance of
the treated areas by ventenata. In fact, the untreated control and areas
treated with the highest imazapic application rates were similar in ex-
otic annual grass density and cover in the third or second yr after treat-
ment in the 2014 and 2015 applications, respectively. Most invasive
annuals produce large seed banks, though these rarely persist overmul-
tiple growing seasons (Pyke, 1994). Only a small fraction (b 1%) of
ventenata seed remains viable up to 3 yr in a grassland (Wallace et al.,
2015). Invasive annual grasses have considerable phenological plastic-
ity to support consistent high seed production (Rice and Mack, 1991).
Thus, ventenata survivors were likely able to adjust to the reduction in
ventenata abundance and rapidly redominate imazapic-treated areas.
This is a management issue because seeding of desirable vegetation is
often postponed for a year after imazapic application to allow the herbi-
cide toxicity to abate; otherwise, imazapic causes high mortality of
seeded vegetation (Davies et al., 2014). There has been some limited
success in medusahead-invaded rangelands with a single-entry ap-
proach of simultaneous seeding and low rate application of imazapic,
but results have not been consistent (Sheley et al., 2012). Furthermore,
our results suggest low rates of imazapic applicationwill not provide ef-
fective control of ventenata. Exotic annual grasses are competitive with
perennial grasses, especially at the seedling stage (Clausnitzer et al.,
1999; Young and Mangold, 2008; Schantz et al., 2016), so it is unlikely
that perennial grasses and other plant groups can be successfully seeded
into these communities when exotic annual grass control is largely lim-
ited to the first yr post treatment.

Our results do not suggest that a single application of imazapic cre-
ates a long enough window of reduced ventenata for the establishment
of perennial grasses or other desired vegetation. An integrated treat-
ment approach may be more effective at controlling ventenata in
rangelands. Mackey (2014) found integrated treatments achieved
greater control of ventenata in Conservation Reserve Program lands
and timothy hay fields. Revegetation of medusahead-dominated
rangelands were much more effective with combined burning and
imazapic application (Davies, 2010). Integrated treatments have repeat-
edly demonstrated to be more effective for controlling exotic species
than single-treatment approaches (Lym, 2005; DiTomaso et al., 2006;
Herrera-Reddy et al., 2012). Alternatively, because there is substantial
control of exotic annual grasses in the first growing season after
imazapic application, there may be an opportunity to seed simulta-
neously with imazapic application if imazapic induced nontarget mor-
tality can be prevented. To overcome imazapic-induced mortality of
simultaneously seed species (Davies et al., 2014), imazapic would
need to be deactivated in the immediate vicinity of the seeded seeds
through activated carbon seed coatings (Madsen et al., 2014) or pellets
(Davies et al., 2017; Davies, 2018).

Management Implications

One- to 2-yr reductions in ventenata and other coexisting exotic an-
nual grasses can be accomplished with imazapic, but longer-term and
substantial reductions will likely be challenging and expensive.
Imazapic applied as the sole treatment to control ventenata does not ap-
pear to be a viable strategy tomanage this exotic annual grass as control
wasnot complete and ventenata fully recovered in two to three growing
seasons after herbicide treatment. Perennial vegetation did not respond
substantially to even the highest levels of ventenata and coexisting ex-
otic annual grass control, and there is nowindowof time to establish pe-
rennial vegetation from seed when herbicide toxicity has diminished
and exotic annual grass competition has been sufficiently limited.
Thus, research is necessary to develop more complete and longer-
term control of ventenata and coexisting exotic annual grasses. Inte-
grated control treatments and possibly other preemergent herbicides,
such as indaziflam (Sebastian et al., 2016), may offer better control
than solely applying imazapic. However, integrated and other herbicide
control of ventenata and coexisting exotic annual grasses will need fur-
ther evaluations and likely be expensive. This suggests that prevention
of ventenata dominance should be a research andmanagement priority
to reduce the need for costly control and revegetation efforts that may
have a high probability of failure.
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