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Methods  We used a Random Forest machine 
learning model to estimate LAI in a Wyoming 
big sagebrush community in the Reynolds Creek 
Experimental Watershed using high resolution (< 1 
cm2) UAS imagery collected in 2021 as predictors 
and plot scale point intercept (quadrat design) field 
data as the LAI reference.
Results  Random Forest modeled estimates of LAI 
were accurate at the plot (r2 = 0.69, MAE = 0.08, 
RMSE = 0.10), and the macroplot scales (error of 
0.065), and mean within plot shadow error was 0.06.
Conclusions  This research demonstrates high 
resolution UAS data can rapidly and accurately 
estimate LAI, with a limited number of field 
measurements, potentially allowing land managers to 
survey seasonally and spatially heterogeneous LAI 1 
hectare at a time over the vast rangelands in the Great 
Basin and similar ecosystems worldwide.

Keywords  UAS · Leaf area index · Rangelands · 
Random forest · Machine learning

Introduction

Leaf area index (LAI) is the green leaf unit area per 
unit area (m2/m2) that intercepts light and is a criti-
cal parameter in global models of water and carbon 
dynamics (Bonan 1993; Hao et  al. 2018; Hoek Van 
Dijke et al. 2020; Pan et al. 2021). Quantifying LAI 
in dryland ecosystems is important because these 
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ecosystems represent about 60 million km2, or 41%, 
of the Earth’s terrestrial surface (Safriel and Adeel 
2005; Prăvălie 2016). LAI variability in dryland eco-
systems is driven by the spatial heterogeneity of plant 
functional types, fractional cover, canopy structure, 
water availability to support transpiration, seasonal 
dynamics of each vegetation type, and climate vari-
ability (Mougin et al. 2014; Bonan 2016; Taylor et al. 
2021; MacBean et al. 2021; Chen et al. 2023). Meas-
uring or estimating LAI with field techniques or local 
instrumentation is costly and does not adequately 
sample the scope and diversity of spatially extensive 
and complex dryland ecosystems.

Methods to accurately measure and estimate 
LAI are time consuming and sometimes unreliable. 
Destructive harvest of photosynthetic matter is con-
sidered the most reliable, but has significant setbacks 
including labor intensive sampling, sample loss and 
degradation in storage, and errors associated with 
proper photo-scanning of the samples (Beerling and 
Fry 1990; Bonham 2013). Instrumentation like Pho-
tosynthetically Active Radiation (PAR) sensors are 
a rapid collection alternative, but fail to differenti-
ate photosynthetic from non-photosynthetic material 
leading to overestimation in woody shrub systems 
like sagebrush (Finzel et  al. 2012). Terrestrial laser 
scanning in the visible and near infrared spectral 
range can accurately distinguish photosynthetic and 
non-photosynthetic material, but careful considera-
tion must be taken to include multiple view angles 
ultimately reducing sampling time efficiency (Olsoy 
et  al. 2016). Point intercept sampling is an accu-
rate method to estimate LAI, but accuracy varies by 
growth form and data collection is labor intensive and 
difficult over large spatial scales (Clark and Seyfried 
2001). Field methods often fail to representatively 
sample the heterogeneous landscapes of drylands, a 
problem potentially addressed by aerial remote sens-
ing systems.

Satellite remote sensing offers broad spatial 
coverage and repeated retrieval of LAI through 
direct relationships like the Normalized Difference 
Vegetation Index (NDVI) (Fan et  al. 2009), Simple 
Ratio (Chen 1996), and the Normalized Difference 
Red-Edge (NDRE) (Delegido et al. 2013). However, 
the spatial resolution of many satellites is too 
coarse to capture the heterogeneity of sagebrush 
(Artemisia spp.)-dominated rangelands, a type of 
dryland ecosystem. Furthermore, the large woody 

component in sagebrush-dominated rangelands, leads 
to overestimation of LAI with satellite remote sensing 
(Hunt, Jr. et al. 2003). Methods have been developed 
to increase the LAI estimation spatial resolution 
(500  m) of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) down to 10  m with 
data fusion (Wang et  al. 2019), but remotely sensed 
data products can exhibit large variability as spatial 
resolutions change, calling into question the reliability 
of these estimates (Liu et al. 2018). The variability in 
LAI may be due to the subtle vegetation dynamics 
or “mixed pixels” characteristic of rangelands and 
even at 10-m spatial resolution these dynamics may 
need to be represented with fuzzy classifications 
(Enterkine et al. 2024). A finer spatial resolution may 
help to increase the reliability of remotely sensed LAI 
estimates, but it is unknown what spatial resolution is 
needed.

Unmanned aerial system (UAS) remote sensing 
can rapidly collect very high spatial resolution (< 1 
cm2) imagery and has the potential to increase LAI 
estimation accuracy while maintaining broad spatial 
coverage. UAS-based LAI estimation has been dem-
onstrated in cropping systems including maize (Peng 
et  al. 2021; Du et  al. 2022; Buthelezi et  al. 2023), 
winter wheat (Hasan et  al. 2019; Wittstruck et  al. 
2022; Wang et  al. 2022), rice (Gong et  al. 2021), 
onions (Córcoles et  al. 2013), vineyards (Kalispera-
kis et al. 2015; Comba et al. 2020), kiwi fruit (Zhang 
et al. 2022), coffee (Mendes Dos Santos et al. 2020), 
and apples (Liu et al. 2021). In all these studies, the 
cropping systems were single species with high cover 
and achieving multi-species LAI estimation in the 
low plant cover systems of arid rangelands has addi-
tional challenges (Smith et al. 2019). Estimating LAI 
of all present vegetation has been demonstrated over 
tree species in tropical forests (Park et al. 2019), and 
in a mangrove forest (Tian et  al. 2017). However, 
UAS-derived estimates with cost effective red, green, 
and blue (RGB) of LAI of all present vegetation has 
remained untested in rangelands.

Estimating LAI in rangelands with UAS presents 
many challenges. Firstly, multiple species exist over 
short distances and a species-specific LAI estimation 
model, like those utilized in cropping systems, is 
impractical. Secondly, due to the heterogeneity in 
species and functional types from bare ground to 
bunchgrasses to shrubs and trees, there is also great 
variability in canopy height that produces shadows 



Landsc Ecol           (2025) 40:27 	 Page 3 of 16     27 

Vol.: (0123456789)

in the imagery adjacent to and within vegetation. 
Shadows are a problem in high resolution UAS 
data because the low light conditions reduce feature 
extraction accuracy (Milas et al. 2017), and in many 
previous studies (e.g., Park et  al. 2019; Buthelezi 
et al. 2023) shadows were masked or ignored. Finally, 
co-registration errors may offset the true location of 
the field-based observations and the truly co-located 
UAS pixels. These spatial uncertainties may 
propagate into modeled estimates of LAI.

Despite the potential challenges of using UAS to 
estimate LAI in rangelands, it is particularly enticing 
because UAS can rapidly cover areas as large as 1 ha 
at very high resolutions (< 1 cm2). To date no current 
methods with UAS have been tested to estimate LAI 
in rangelands using cost effective RGB. Thus, the 
goal of this research is to model LAI of all vegetation 
at a very high resolution (< 1 cm2) over a 1 ha Wyo-
ming big sagebrush community by pairing a UAS 
acquisition with a limited and representative point 
intercept field sample. Given the heterogeneity of the 
vegetative cover and the spatial uncertainties between 
field data and UAS data, our objectives are to: (1) 
train a Random Forest (RF) model to estimate LAI 
using UAS spectral and structural data and (2) vali-
date the trained RF model at the plot (1 m2) scale, test 
the accuracy at the macroplot (1 ha) scale, and assess 
the within plot accuracy and impacts of shadows.

Methods

Study area

This study was conducted in the Reynolds 
Creek Experimental Watershed, a Long-Term 
Agroecosystem Research (LTAR) site near Murphy, 
Idaho, USA (Fig. 1). The 1 ha macroplot (43°10′13″ 
N, 116°43′20″ W) had an elevation of 1446  m and 
was dominated by Wyoming big sagebrush (Artemisia 
tridentata subsp. wyomingensis), bluebunch 
wheatgrass (Pseudoroegneria spicata), and Sandberg 
bluegrass (Poa secunda). Additionally, less common 
forbs and herbaceous vegetation were present in the 
study site that also contributed to the LAI. Invasive 
grasses such as cheatgrass (Bromus tectorum) are 
sparsely present in the study site; however, in the 
sampling locations cheatgrass was not measured. The 
mean annual precipitation was 271  mm and mean 

annual temperature was 8.8 °C (WRCC, 2024). Soils 
were well drained gravelly loam from the Mackey-
Cottle associations denoted with typical profiles of A 
and B horizons with lithic bedrock (Soil Survey Staff, 
2024). The site was representative of Wyoming big 
sagebrush communities in the Great Basin.

Field sampling

LAI measurements were recorded on June 3, 2021 
near peak biomass for the site at 30 plots (1 m2) that 
were randomly distributed and oriented at a randomly 
assigned azimuth within a 1  ha macroplot (Fig.  1). 
Azimuth values ranged from 0 to 360 degrees at 
intervals of 45 degrees. The corners of each plot 
were marked with a monument and measured with 
a Topcon Hiper V (Topcon Positioning Systems, 
Livermore, CA, USA) Real Time Kinematic (RTK) 
survey-grade global position system (GPS) with sub-
centimeter accuracy. The corner monuments were 
vertically oriented PVC tubes that each plot leg could 
slide into for sampling. The sampled area, which is 
fully within the plot corners, represented a one square 
meter area and was designed in a quadrat scheme 
with 5 rows (20 cm apart) and 20 pin drop locations 
along each row (5  cm apart). The point intercept 
measurement device is a rigid system standing on 
four legs that slide into the monument locations. The 
measurement grid was elevated above the vegetation 
canopy and leveled with four bubble levels, one on 
each corner. A rigid rail with 20 notches to guide 
pin point measurement locations was set up in five 
positions, where each position corresponded to the 
rows of the quadrat scheme. The rigid system created 
a precise and repeatable sampling grid. For each plot, 
there are a total of 100 pin point samples to measure 
LAI. A sharpened pin, with infinitesimally small area, 
was manually dropped at each pin point location. 
While the pin was lowered from above the canopy 
to the ground surface, each time the pin encountered 
green vegetation a “hit” was recorded along with the 
vegetation species the pin hit. In our case, plot level 
LAI (1 m2) was calculated as the ratio of m2 of leaf 
area per m2 of ground area sampled, or the ratio of 
green hits of the 100 pinpoint attempts (Clark and 
Seyfried 2001). At the macroplot scale (1  ha) LAI 
is calculated as the average of the representative 
sampling design of all 30 plot measurements. The 
manual and human component of LAI measurement 
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with point intercept methods in a quadrat design can 
lead to variable hit counts at each pin point location, 
but differences in observer generally average out 
at the plot level. After a quality assessment we 
determined two of the plots were measured offset 
from their monument locations by a full meter due to 
human error setting up the point intercept measuring 
device and we excluded them from our analysis 
leaving a total of 28 plots.

UAS data acquisition

We collected UAS data over the 1  ha macroplot on 
June 3, 2021 near peak biomass of the site, with a 
DJI Phantom 4 to collect RGB data at nadir and off-
nadir (65 degrees) camera angles to capture structural 

information within the plant canopy following 
methods described by Cunliffe et  al. (2016). To 
minimize shadows the flight took place near solar 
noon. Flight height was 20 m, and forward and side 
overlap were 75%. The low flight height produced an 
average ground sample distance (GSD) of 8.31 mm/
pixel. Thirteen black and white ground control points 
in a star pattern were measured with the RTK system 
to geo-reference the imagery. The RGB orthomosaic, 
dense point cloud, digital terrain model (DTM), 
and digital surface model (DSM) were calculated 
with structure from motion (SfM) photogrammetry 
software Agisoft Photoscan version 1.8.1. We report 
the accuracy (average error) and precision (standard 
deviation) of the SfM photogrammetry processing 
(James et  al. 2019). The average x, y, and z error 

Fig. 1   The nested sampling design for estimating leaf area 
index (LAI) in the Reynolds Creek Experimental Watershed 
in southwestern Idaho, USA (a), with reference unoccupied 

aerial system (UAS) imagery (b and c) of the 1 ha macroplot, 
outlined in black (b), and a close-up view of a single plot, 
outlined in red (c)
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(cm) when compared to the 13 ground control points 
was 3.86, 4.07, and 3.04, respectively. The standard 
deviation of the x, y, and z error (cm) was 2.96, 2.95, 
and 1.98, respectively. The resulting orthomosaic had 
a spatial resolution of 8.31 mm/pixel while the DTM 
and DSM had spatial resolutions of 16.6 mm/pixel.

Spatial interpolation

We used point intercept observations (quadrat 
design) in our study as ground truth measurements 
of LAI which covered a 1 m2 plot, denoted as Point 
Intercept Sampling in Fig.  2. It is important to note 
the pin point observations theoretically have no area 
value and the UAS pixels have a spatial resolution 
of 8.31  mm/pixel. The difference in area between 
the pin point observations and the UAS pixel was a 
significant concern. Comparing a single pin point 
to a single pixel was problematic because LAI is 
a unitless value defined as the green leaf unit area 
per unit area. Point intercept sampling achieved an 
area value of 1 m2 by calculating the ratio of green 
hits recorded at each of the 100 pins within the plot, 

where the pins are a representative sample. Our UAS 
pixels had an observed area (0.69 cm2). Therefore, we 
could not directly assign the pin point measured hit 
value directly to the co-located UAS pixel.

As shown in our workflow diagram (Fig. 2), point 
intercept plots (n = 28) were initially split into train-
ing (n = 4) and validation (n = 24) sets. For all of the 
training plots we first generated the pin point meas-
urement locations within each plot. Each plot consists 
of 100 pin points, distributed over 5 rows that were 
20 cm apart, 20 points per row at 5 cm apart. Given 
these geometric guidelines, we generated the pin 
points with a geographic information system (GIS) 
workflow. The row orientation was determined by the 
plot azimuth. We acknowledge these generated points 
contain a certain level of spatial uncertainty from 
the GPS coordinates, human variability in measure-
ment which may be significant, and locational error 
associated with generating the points that was dif-
ficult to quantify, potentially adding to the issues of 
co-registration.

The spatial resolution and unit differences between 
the pin point observations and the UAS data coupled 

Fig. 2   Workflow diagram of the order of modeling operations 
with color coded steps from field observation of Point 
Intercept Samples and UAS acquisition to model validation 
at multiple scales. Data acquisition (red) is split into training 
and validation sets. Training data is rasterized with Inverse 

Distance Weighting (yellow) and paired with UAS data (red) 
to train two Random Forest models (green). Modeled estimates 
are validated with the point intercept sampling data (purple) at 
the macroplot, plot, and within plot scales
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with co-registration errors in the GPS and UAS 
data motivated us to spatially interpolate the point 
intercept field observations. For the four training 
plots, we used Inverse Distance Weighting (IDW) as 
a preprocessing step (Fig. 2, yellow oval) to rasterize 
the pin point observation to the resolution of the UAS 
raster grid. The resulting IDW interpolated training 
surface estimated the continuous LAI value at a given 
location as a weighted mean of the nearby pin point 
observation defined by Eq.  1, where the calculated 
weight wi was multiplied by the observed LAIi 
(Brunsdon and Comber 2015). The distance weight wi 
was calculated by Eq. 2 where a positive α determined 
how the distance between two observations (x 
and xi) was treated. IDW was performed with the 
“gstat” package in R version 4.4.0 (Pebesma EJ 
2004; Gräler et  al. 2016; R Core Team 2024). 
The four training plots were representative of four 
dominant vegetation types in the study macroplot: 
Wyoming big sagebrush, bluebunch wheatgrass, 
Sandberg bluegrass, and barren. Dominant means the 
contribution of LAI was dominantly from a single 
vegetation species even though other species existed 
within the plot.

Development of an IDW interpolated training 
surface for four training plots accomplished two 
important steps: first, the area discrepancy between 
pin point LAI hit observation and pixel was resolved 
by producing continuous float LAI interpolated 
values for every pixel, and second, the location of the 
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observed LAI was smoothed reducing the importance 
of offset issues associated with field sample to UAS 
data co-registration. Due to the sensitivity of IDW to 
edge effects the interpolation area only covered 0.76 
m2 of each of the four training plots or the outermost 
extent of the sampled area. Ten values of α (1 through 
10 at intervals of 1) were tested and compared 
visually with the UAS reference imagery. Selection 
of α was done based on the visual representativeness 
of the resulting IDW interpolated training surface. 
Accurate representation of the space between the 
generated pin point locations was paramount, which 
is why a visual assessment was most appropriate.

Random forest modeling

Random forests (RF) are a tree based supervised 
machine learning method appropriate for classifica-
tion and regression modeling (Breiman 2001). RF’s 
are broadly applied in remote sensing, and were 
selected in this research to model LAI because RF’s 
are generally robust to overfitting even with highly 
correlated variables such as the UAS variables we 
derive, discussed below (Belgiu and Drăguţ 2016). 
We used the ‘randomForest’ package in R (Wiener 
2002).

Predictor selection was iterative. Two sources of 
raw data were used in the model: RGB spectral indices 
and the canopy height model derived from the digital 
surface model (DSM) minus the digital terrain model 
(DTM). The canopy height model was resampled to 

(2)w
i
= ||x − x

i
||
−�

Table 1   Color and texture 
features used to estimate 
LAI in the final RF model

R red, G green, B blue, 
DSM digital surface model, 
DTM digital terrain model

Feature Name Abbreviation Equation Reference

RGB Chromatic Coordinates RCC RCC = R/(G + R + B) Park et al. (2019)
GCC GCC = G/(G + R + B)
BCC BCC = B/(G + R + B)

Excess Greenness ExG ExG = 2*G—(R + B) Park et al. (2019)
Canopy Height CHM CHM = DSM—DTM –
Low Pass Filter LPR 3 × 3 moving window

average
Jensen (2016)

LPG

LPB

High Pass Filter HPR 3 × 3 moving window
weighted average

Jensen (2016)
HPG

HPB



Landsc Ecol           (2025) 40:27 	 Page 7 of 16     27 

Vol.: (0123456789)

the RGB resolution with a bi-cubic interpolation. As 
shown in Table  1, we selected the RGB chromatic 
coordinates, excess greenness, canopy height, and 
two filters with a 3 by 3 moving window. The filters 
were applied because we do not discard the shadowed 
pixels and contextual neighborhood values may be 
important for estimating LAI in a shadowed pixel. 
Predictor data extent matched the IDW interpolated 
training surface extent.

The RF model was trained to estimate the tar-
get variable, the four IDW interpolated training sur-
faces (Fig.  2), using the predictor variables listed in 
Table 1. Predictor variables were clipped to the extent 
of the IDW interpolated training surfaces. We tested 
many other predictors including standard deviation 
of red, green, and blue; however, using the variable 
importance plot we discarded non-important pre-
dictors to reduce computation times and potentially 
increase model performance. The purpose of the 
workflow was to assess whether a RF model could 
be trained to estimate LAI at a high resolution over 
a 1 ha macroplot by pairing UAS data with a limited 
and representative point intercept field sample. As 
shown in Fig. 2, two RF models were developed: one 
site wide RF model (trained with 3 IDW interpolated 
training surfaces as the target variable and the associ-
ated predictor variables) and one RF model specific 
to Sandberg bluegrass (trained with 1 IDW interpo-
lated training surface as the target variable and the 
associated predictor variables).

Validation

Validating the RF estimated LAI was completed at the 
1 m2 plot scale and within plot scale and tested at the 
macroplot scale (1 ha). As shown in Fig. 2, the plot 
scale validation data was split into two categories: 
site wide testing at the scale macroplot (n = 1) scale, 
and validation at the plot (n = 22), and within plot 
(n = 4, randomly sampled plots) scales. We validated 
the Sandberg bluegrass RF model estimated LAI 
at the plot level (n = 2) because only 3 plots in total 
were dominated by Sandberg bluegrass. We tested the 
site wide RF model estimate accuracy at the macrop-
lot scale. We tested macroplot accuracy two ways: 
by averaging the estimated LAI for pixels within the 
28 plots and averaging the estimated LAI for all pix-
els within the macroplot. Macroplot measured LAI 
was calculated as the average of plot measured LAI 

(n = 28). As shown in Fig.  2, macroplot testing was 
assessed with the site wide RF model. Sandberg blue-
grass existed throughout the macroplot, but in order 
to estimate LAI of Sandberg bluegrass separately one 
would need to accurately map and classify vegetation 
at the species level. Currently, species level mapping 
has not been demonstrated in complex rangelands at 
the resolution of UAS data used in this study.

Plot level validation of the site wide RF model and 
the Sandberg bluegrass RF model required additional 
consideration. Point intercept plot measured LAI is 
representative of and calculated for an area of 1 m2. 
The plot monument corners extend well beyond 1 m2 
due to the design of the point intercept sampling sys-
tem, and to resolve the area mismatch we generated 
an exactly 1 m2 validation square. The Sandberg blue-
grass specific model was developed to assess whether 
RF could be implemented to resolve species specific 
issues at the plot level. Plot level RF modeled LAI 
estimates were calculated as the sum of the LAI pixel 
values divided by the pixel count within the 1 m2 val-
idation boundary. At the plot level we calculated the 
Mean Absolute Error, Root Mean Squared Error, and 
R-squared of the combined results of the site wide RF 
model plus the Sandberg bluegrass model (see valida-
tion data splits Fig. 2).

Additionally, we validated the site wide RF 
model within plot mean accuracy for shadow and 
shadow free pixels. An important component of 
our workflow is the inclusion of shadow covered 
pixels in the training and validation of the RF 
model estimates of LAI. We directly compared 
individual pin point measurements within four 
randomly selected plots to the site wide RF model 
LAI estimates (Fig.  2, validation). Because of the 
importance of co-registration of very high resolution 
UAS data to field data with GPS errors and human 
error in sampling we also assessed the site wide 
RF model LAI estimate within a 5-cm diameter 
buffered area about each pin point measurement 
location to the pin point measured LAI. For both the 
direct pin point to pixel and the pin point to buffered 
comparison we visually assigned a shadow value 
as either shadow impacted pixels (directly within 
full shadow or directly adjacent to a full shadow) or 
shadow free pixels. The buffering step and the visual 
shadow assignment which included adjacent pixels 
was conducted to offset the potential co-registration 
errors and the pin to pixel comparison issue that 
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motivated us to implement IDW as discussed earlier 
in the methods. For both the pin point to pixel and 
the pin point to buffered comparison we compared 
the mean full site RF model LAI with the mean pin 
point measured LAI. Due to the area discrepancy 
between pin points and pixels we analyzed the within 
plot mean totals to determine whether shadows posed 
a significant reduction in overall plot accuracy.

Results

Spatial interpolation

Inverse distance weighting was applied to address the 
area mismatch between UAS and field observations 
and smooth the location of the generated points 
within the four training plots (Fig.  2) over the UAS 
grid. The resulting IDW interpolated training surface 
contained continuous LAI values for each pixel at a 
spatial resolution of 8.31  mm/pixel. Figure  3 shows 
the generated points and IDW interpolated training 
surfaces for two selections of α (1 and 5), which 
determines the weighting of an observation for a 
given distance, for training plot number 30. The IDW 

Fig. 3   Leaf area index (LAI) interpolated from 100 points 
(a) to the measurement boundary (blue rectangle) within the 
1 m2 plot (red outline) using inverse distance weighting (IDW) 
with two distance weights (α). A lower weight (α = 1) leads to 

a smoothed average surface that underrepresents the minimum 
and maximum (b), while a higher value (α = 5) had more zero 
values (c) and was a better match to the unoccupied aerial 
system (UAS) imagery
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interpolated training surface is visibly different for the 
two different values of α. When α is small (Fig. 3b) 
the range in interpolated values was also small 
(LAI = 0–1.6). When α was increased to five (Fig. 3c) 
the range in LAI increased to 3 (0–3), which matches 
the observed range in pin point measured LAI. The 
IDW interpolated training surface for an α of five was 
more realistic, matching the green vegetation visible 
in the reference imagery (Fig.  3a). Areas where we 
expect zero LAI are reasonably represented with an α 
of five. In contrast, with an α of one, areas where we 
expect a LAI of zero are overestimated compared to 
the reference imagery. We determined an α of 5 to be 
appropriate because increasing α to 6 or more did not 
add any value to the spatial representativeness of the 
IDW interpolated training surfaces. IDW smoothing 
accomplished a few important adjustments to the pin 
point (quadrat design) observations in a plot: IDW 
successfully represented the space between generated 
pin point locations, converted the count data to a more 
realistic continuous value for each pixel (resolving 
unit discrepancies), increased the amount of training 
data 100-fold (100 points versus over 10,000 pixels), 
and interpolated LAI in shadow obscured pixels. We 
acknowledge the increase in training data achieved 
through IDW may degrade the accuracy of the actual 
field observations; however, manual collection of 
10,000 observations is impractical and the workflow 
presented pairs UAS acquisition with a limited and 
representative point intercept sample (n = 4 plots) to 
model LAI for an entire hectare greatly increasing 
data collection time savings. We produced an IDW 
interpolated training surface for four representative 
plots as a preprocessing step of the field sample point 
intercept (quadrat design) data (Fig. 2).

Random forest modeling

Two RF models were developed (Fig.  2). One site 
wide RF model was trained using IDW interpolated 
training surfaces from three plots representative of 
Wyoming big sagebrush, bluebunch wheatgrass, and 
barren plots. One Sandberg bluegrass RF model was 
trained using an IDW interpolated training surface for 
a single plot representative of Sandberg bluegrass. All 
pixels within the measurement boundary (0.76 m2) 
for the IDW interpolated training surface (target vari-
able) and UAS features (predictors) were used to train 
the RF models. The site wide RF model performed 

well for all vegetation types aside from plots whose 
LAI was dominated by Sandberg bluegrass. Variable 
importance in the site wide RF model was in the fol-
lowing order: CHM, bcc, rcc, gcc, LPR, LPB, LPG, HPB, 
HPG, HPR, and finally ExG. The site wide RF model 
had a mean squared error (MSE) of 0.28; however, it 
is important to note the MSE was derived based on 
the IDW interpolated training surface and as shown in 
Fig. 2, validation is only conducted on the field sam-
pled data. The resulting MSE is therefore a reflection 
of the site wide RF model performance as measured 
against the preprocessing step of IDW interpolation 
and is not indicative of model performance against 
the field sampled data.

A visual assessment of the site wide RF model 
estimated LAI for two randomly selected plots from 
the validation set is shown in Fig. 4. The complexity 
of LAI represented by the site wide RF model LAI 
estimates surpassed the spatial complexity visually 
apparent in the IDW interpolated training surface 
(Fig.  3c). Wyoming big sagebrush has sage green 
colored leaves (Fig.  4a, c) and had the highest 
contribution of LAI in the plots shown, which 
correspond to the darker green pixels in the LAI 
estimation (Fig.  4b, d). LAI for herbaceous cover is 
also apparent by the darker green color (center of 
the plot boundary (Fig. 4d). Visually, the herbaceous 
cover appears brown in the reference imagery 
(Fig. 4a, c), which is discussed in detail below. Bare 
ground is visually represented well in Fig. 4.

Validation

Initially we trained a RF model with all four IDW 
interpolated training surfaces (Fig. 2), which would 
have resulted in a single RF model; however, RF 
model performance was relatively poor when 
compared with all 24 validation plots (r2 = 0.39). 
Upon further inspection, the RF model trained 
with four IDW interpolated training surfaces 
underestimated LAI in the only three plots 
dominated by Sandberg bluegrass, two plots from 
the validation set and one plot from the training 
set. To resolve the Sandberg bluegrass issue we 
developed two RF models, one full site RF model 
trained with three IDW interpolated training 
surfaces representative of Wyoming big sagebrush, 
bluebunch wheatgrass, and barren, and one 
Sandberg bluegrass RF model trained with a single 
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IDW interpolated training surface representative 
of Sandberg bluegrass. The site wide RF model 
performed well at the plot level with an r2 = 0.72, 
compared with the 22 plots from the validation set 
that were not dominated by Sandberg bluegrass 
(Fig.  2, validation). Because Sandberg bluegrass 
is prevalent in the study site, we combined the 
results of the site wide RF model (n = 22, plots) 
with the Sandberg bluegrass RF model (n = 2, 
plots) to assess plot level accuracy. At the plot 
level, measured LAI was the ratio of the hits, and 
modeled LAI was the average of the estimated LAI 
pixels within the 1 m2 validation plot boundary. 
The measured plot LAI and estimated LAI are 
collectively plotted in Fig. 5 (r2 = 0.69, MAE = 0.08, 

RMSE = 0.10). The Sandberg bluegrass specific 
RF model appears to more closely follow the 
dotted one-to-one line (Fig.  5, solid black points), 
although we cannot draw any conclusions because 
there are only two points. The full site RF model 
generally overestimates lower values of LAI and 
underestimates larger values (Fig.  5), even though 
the relationship is linear between RF modeled and 
plot measured LAI.

We also compared the site wide RF model 
estimated LAI with the measured LAI at the 
macroplot scale. Because Sandberg bluegrass is 
prevalent and it is impractical to model Sandberg 
bluegrass separately at the macroplot scale, we 
compared the site wide RF model LAI estimates 

Fig. 4   The unoccupied aerial system (UAS) true color 
orthomosaic for plot 3 (a) and plot 19 (c) and the resulting 
Random Forest (RF) model estimated leaf area index (LAI) 
predictions are shown for plot 3 (b) and plot 19 (d). High 

LAI is depicted in dark green and low LAI is light green. The 
reference image in the left column shows the variability of 
vegetation and the presence of shadows and the right column 
shows the variability in the predicted LAI within the plot
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(average value over the macroplot) with the average 
value of the measured LAI (28 randomly distributed 
plots, that are representative of the macroplot). 
It is important to note the field measured LAI is 
a representative sample covering only 28 square 
meters, or 0.28% of the 1  ha macroplot. We first 
calculate the direct comparison, or the average of 

the RF model estimated LAI within the plots (28 m2) 
to mimic the field sample design. We found the RF 
model estimated LAI is 0.28, which is equal to the 
field measured LAI of 0.28. By considering all of the 
pixels within the macroplot we found a slightly higher 
RF model estimated LAI of 0.345.

We quantified the shadow impacts on within plot 
RF model LAI estimate accuracy of four randomly 
selected plots from the validation set (Fig.  2, 
validation). We generated pin point measurement 
locations for the four randomly selected plots. For 
each pin point within the four randomly selected 
plots, we visually recorded whether the co-located 
pixel was shadow affected or not in the RGB imagery. 
This representative sample included 400 pin point 
locations that were used to assess within plot shadow 
impacts. A direct comparison of the site wide RF 
model LAI estimates to the measured LAI at each 
pin point would be incorrect because of the area 
difference between the pin point (no area value) and 
the pixel (area of 0.69 cm2). Therefore, we compared 
the mean site wide RF model LAI estimates with the 
pin point measured LAI for shadow affected pixels 
(Table  2). We compared the mean no shadow pin 
point measured LAI with the mean of the co-located 
site wide RF model LAI estimate. For each pin 
point we also created a 5 cm diameter buffered area 
and calculated the mean site wide RF model LAI 
within the buffer to mitigate potential co-registration 

Fig. 5   Random Forest (RF) predicted leaf area index (LAI) 
for each validation plot (n = 24) is plotted against the measured 
leaf area index. The Sandberg bluegrass RF model results are 
plotted as solid black points. The model fit is shown as a solid 
line, and the 1:1 line (dotted) is shown for reference

Table 2   The impact of shadows in the unoccupied aerial system (UAS) imagery on the Random Forest (RF) model estimated leaf 
area index (LAI) is shown for four randomly selected plots from the validation set (400 points in total)

The mean point measured LAI, the single pixel mean modeled LAI co-located with the point, the 5-cm diameter buffered modeled 
mean LAI about the co-located point, and the count of data points are presented in the columns. Each point was assigned a value of 
shadow free or shadow affected. The mean LAI values are also summarized

Plot Number Shadow Denotation Measured LAI Modeled LAI Point 
to Pixel

Modeled LAI Buff-
ered 5 cm

Count

3 No Shadow 0.117 0.229 0.239 77
Shadow Affected 0.087 0.418 0.389 23

7 No Shadow 0.296 0.346 0.357 81
Shadow Affected 0.842 0.375 0.385 19

8 No Shadow 0.241 0.235 0.235 87
Shadow Affected 0.077 0.243 0.193 13

17 No Shadow 0.521 0.361 0.367 96
Shadow Affected 0.000 0.632 0.570 4

Totals No Shadow 0.305 0.295 0.302 341
Shadow Affected 0.322 0.380 0.357 59
Cumulative LAI 0.308 0.308 0.310 400
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errors. The site wide mean RF estimated LAI for 
the co-located pixel (0.308) and for the buffered 
area (0.310) is nearly equivalent when compared 
to the measured (0.308) LAI (given as bold totals 
in Table  2). A total of 59 out of 400 (14.75%) pin 
point measurement locations were co-located with a 
shadow affected pixel. Within plot mean site wide RF 
model LAI shadow affected estimates were also very 
similar to the measured LAI (point to pixel: 0.380, 
point to buffer 0.357, and measured 0.322). Within 
individual plots we noted more variability between 
measured LAI and RF modeled LAI. Co-located 
pixels that were shadow free had more similar mean 
measured LAI compared to the modeled LAI than the 
shadow affected pixels; however, the total difference 
in mean LAI was small as seen in the totals (Table 2). 
The difference or residual between measured and 
point to pixel modeled LAI in shadow affected pixels 
was 0.06 calculated as the difference between the 
bolded measured shadow (0.322) and modeled point 
to pixel (0.380) totals (Table 2).

Discussion

We demonstrate in this study that LAI of all present 
vegetation species can be modeled with point inter-
cept plots, visual RGB UAS data, and RF machine 
learning models. Very high resolution (< 1 cm2) 
RGB-based indices and a canopy height model 
derived from structure from motion were the only 
predictors needed to achieve accurate results. We 
accomplished this by transforming the plot data 
using inverse distance weighting which increased the 
training data of LAI from 100 points per plot to over 
10,000 pixels per plot. This important step address 
two basic difficulties when comparing the measured 
LAI and UAS data: differences in area between pin 
point observations (no area) and pixels (0.69 cm2), 
and co-registration errors (smoothed by IDW). 
Addressing these difficulties allowed us to develop 
a site wide RF model to estimate LAI of the present 
vegetation species and we obtained r2 values of 0.72 
excluding Sandberg bluegrass and 0.69 for the com-
bined output of the full site and Sandberg bluegrass 
RF models, which is similar to other published work 
using a Random Forest and RGB UAS data to esti-
mate LAI of maize (r2 of 0.71–0.88 (Du et al. 2022)). 
We presented a paired approach where UAS data is 

collected alongside a representative limited field sam-
ple (n = 3 plots for the site wide RF model) of point 
intercept LAI (quadrat design) to train and model LAI 
over a 1 ha macroplot at an 8.31 mm/pixel spatial res-
olution. In rangelands there is additional complexity 
because of the multitude of vegetation species present 
that all green up at different times, and further valida-
tion of the method detailed here across a full growing 
season is warranted.

The site wide RF model in our study performed 
well at plot level. At the macroplot level (1  ha) we 
found similar results for within plot average LAI 
and slightly higher RF model estimated LAI when 
all pixels within the macroplot were considered. 
Our macroplot comparison shows the promise of 
using UAS for LAI estimation, which has more 
complete coverage than the randomly distributed 
field plots; however, these methods should be tested 
across a range of sites with additional macroplots for 
validation. We also analyzed the within plot impacts 
of shadows, which differed from other research where 
shadows were either not discussed or discarded 
completely (e.g., Park et  al. 2019; Buthelezi et  al. 
2023). One difficulty of shadows is that low light 
conditions may reduce feature extraction accuracy, 
and Milas et  al. (2017) demonstrated modeling 
shadows separately can increase the overall accuracy 
of feature mapping. In our study the average LAI 
estimates in shadowed areas were better than the 
individual within plot estimates, which had some 
variability. The difficulty the site wide RF model 
had representing the variability of shadow affected 
pixels for individual plots is unsurprising because 
shadows within a canopy may have far different 
LAI than shadows outside of a canopy. On average 
the site wide RF model LAI estimates for shadow 
affected pixels was very similar to the measured 
LAI (0.380 versus 0.322, respectively). Minimizing 
shadows during UAS acquisition by flying near solar 
noon is important due to the widespread existence 
of shadows and their strong contrast between soils, 
background, and biocrusts in rangelands (Roser 
et  al. 2022). Discarding shadows completely may 
not be a reasonable option in rangelands because 
excluding shadow affected pixels could misrepresent 
the obscured portion of LAI. Although the within 
plot mean site wide RF model LAI accuracy for 
shadow affected pixels was similar to the measured 
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LAI, future research should attempt modeling LAI of 
shadow affected pixels separately from shadow free 
pixels.

The variability of LAI in rangelands is visually 
apparent in the UAS reference imagery used in this 
study, which is lost in the spatial generalization of sat-
ellite based remote sensing products. Even comparing 
MODIS satellite-based remote sensing LAI products, 
estimates vary a great deal (e.g., MCD15 and Global 
Land Surface Satellite (GLASS)) and introduces 
uncertainty into carbon and water cycle modeling 
(Liu et al. 2018). Evapotranspiration (ET) and Gross 
Primary Production (GPP) are both important outputs 
from carbon and water models and it has been dem-
onstrated that these are sensitive (errors as large as 
20%) to LAI (Heinsch et al. 2006; Ryu et al. 2011). 
The benefit of the satellite-based remote sensing 
products is their temporal and spatial coverage, which 
address the significant under sampling issue associ-
ated with field-based techniques. UAS has the poten-
tial to fill the gap between field and satellite-based 
scales, with high accuracies, and relatively large spa-
tial and temporal coverage, that can be achieved by 
re-flying a site. While re-flying a site may introduce 
differences in viewing angle and solar illumination, 
the method detailed here uses a limited field sample 
(n = 3–4, 1 m2 plots) paired with a UAS acquisition 
to train a RF model to estimate LAI of an entire hec-
tare and the paired approach may mitigate the differ-
ent conditions for each UAS acquisition. Scaling the 
carbon and water cycle for a site down to the plot (1 
m2) and the pixel (1 cm2) is currently difficult with 
remote sensing, but a comprehensive physical model 
of carbon and water cycling could be greatly aided by 
the very high resolution, accurate, and spatially het-
erogeneous LAI estimates achievable by UAS.

Limitations

Although our full RF model of LAI performed well 
over nearly all the vegetation types, the model under-
estimated Sandberg bluegrass, a small stature grass, 
even when we incorporated Sandberg bluegrass in 
the training data. Ultimately, we developed a Sand-
berg bluegrass specific model that produced equiva-
lent results to the full model over plots dominated by 
this vegetation. The non-photosynthetic vegetation 
for Sandberg bluegrass may be visually substantial. 
Interestingly, in our site wide RF model the LAI of 

Sandberg bluegrass was underestimated highlighting 
difficulty of LAI estimation of small stature grasses 
with large amounts of non-photosynthetic vegeta-
tion. Sandberg bluegrass has fine vertically oriented 
leaves and LAI is easy to underestimate with remote 
sensing at the nadir view. Additionally, in this Wyo-
ming big sagebrush community early June is likely 
past peak greenness for Sandberg bluegrass, which 
keeps its leaves tightly rolled to avoid transpiration 
losses due to drought stress (Link et  al. 1990). The 
dead and senescing materials of Sandberg bluegrass 
also lay flat which may lead to overestimation of dead 
material from nadir remote sensing (e.g., Mayr and 
Samimi 2015). The density of grass coverage is also 
important and a combination of low density and low 
greenness may lead to underestimation (Sha et  al. 
2019). Estimating LAI of small-stature grasses with 
large amounts of non-photosynthetic vegetation like 
Sandberg bluegrass may be more successful if LAI 
estimation models were developed for each plant 
functional type, or image collection spanned a tempo-
ral window (Wood et al. 2022).

Our study used point intercept plots as the LAI ref-
erence, which describe 96% of the variability in LAI 
for all the vegetative species present in Wyoming big 
sagebrush communities (Clark and Seyfried 2001). 
If we had used destructive sampling the measured 
LAI may have differed; however, the study site was 
established for long term vegetation monitoring and 
destructive sampling was not a viable option. Com-
paring the plots to UAS data introduces a spatial 
issue: identifying the exact measurement location 
of each observation within the plot. Each plot cor-
ner was surveyed with a highly accurate RTK sys-
tem; however, the point intercept measurement loca-
tions, or pins, within the plot had to be estimated. 
We expect some location uncertainty between the 
generated measurement locations within each plot 
and the actual measurement location. We attempted 
to mitigate these spatial uncertainties, which are 
present in all UAS to observation comparisons, by 
applying IDW to interpolate observation locations. 
This step may help address the spatial uncertainty, 
but also may introduce incorrect LAI representation 
between pins. Additionally, the spatial uncertainty 
in the processed UAS imagery was larger than our 
pixel size (8.31 mm) which may impact the training 
relationships between field samples and UAS pixels. 
With advances in technology UAS data locational 
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accuracy may be increased potentially reducing the 
need to apply inverse distance weighting as presented 
in this work, which helps to overcome the spatial 
uncertainty.

Conclusions

This study provides an important step towards 
broad application of UAS to retrieve LAI by 
demonstrating a trained RF model can accurately 
estimate LAI at multiple scales over a diverse 
range of species characteristic of Wyoming big 
sagebrush communities (r2 = 0.69 compared to 
reference point intercept plots). Our workflow 
pairs a UAS acquisition with a representative and 
limited (n = 3 plots for our site wide RF model) 
field sample to accurately estimate LAI over a 1 ha 
macroplot. Future research should investigate the 
transferability of this methodology to different sites 
across an elevational gradient of plant communities 
common to rangelands in the Great Basin. The 
timing of image acquisition may impact the model 
if the paired UAS plus field data collection cannot 
be completed on the same day, and an assessment 
of multiple images throughout the growing season 
would further validate this approach. A plant 
functional type-based model of LAI may address 
the species-specific issue we noted when estimating 
LAI over Sandberg bluegrass, which is a logical 
next step because UAS protocols for mapping plant 
functional type with high accuracy in rangelands 
are well established (e.g., Roser et al. 2022). Rapid 
and accurate quantification of leaf area index of 
all present vegetation in vast rangelands is faced 
with two problems: first, accurate field based 
results require significant time to collect thereby 
limiting their coverage, and second, satellite-based 
remote sensing products are often too coarse in 
spatial resolution to represent the subtle vegetation 
dynamics, especially in rangelands dominated 
by woody shrubs like Wyoming big sagebrush 
(Fremgen-Tarantino et  al. 2021; Applestein and 
Germino 2022). UAS offers an enticing middle 
ground because accurate and cost effective RGB 
data can be quickly collected at a fine spatial 
resolution (< 1 cm2) over areas of meaningful 
size with a limited number of point intercept plots 
(quadrat design) to quickly estimate LAI one 

hectare at a time. LAI is an important variable for 
carbon and water modeling that rapidly changes 
with environmental conditions, season, and species; 
and this study demonstrates UAS can be an accurate 
tool for estimating LAI adding to the ever growing 
toolbox of UAS-derived rangeland metrics (Gillan 
et al. 2020).
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